Transition to A Level Computer Science

2022 Start

St John
Bosco
College

“it is not enough for children to be loved, they must know that they are loved”

#Believe And Achieve
Parkham Street, Battersea,London SW11 3DQtel: 0207 924 8310 fax: 0207 738 1867e:
info@sjbc.wandsworth.sch.ukw: www.sjbc.wandsworth.sch.uk

Contents

[La Lo To (VLo ot | O TSP PS PSPPI 2
ReCOMMENAEA REAMING..........oooiiiiiieiie et e e e e e e et e e e e e e seataaeeeesestaeeeeeseasttaseeesannstaseeeeannstaneeesansees 3
USEIUI WEDSIEES.......coneiiieieeeti ettt h e b e b e e bt e e a bt e sa bt e sabe e ehe e e abe e e beesabeesabeesmbeesabeeaaeeenbeeessanres 4
TranSitioN ACTIVITIES.o e e s e e s s e e e e e s r e e e s e e r et e e e e e s nreeeeeeeeeeeeeeens 5
Data Types, Data Structures and AlGOITNMS.........iiiii e e e e e e e e e s snbre e e e e e e e e e s 5
Yol 0 1Y/ 1Y PP RR S PPPPPPPPRPPIN 5
ol 0 Y7 XY U UUPUPPRN 5

2T TaF T WV o T -] o] L= RPN 6
Problem SOIVING and Programiming........oooc oottt e e e e e e eeeece e bbb e e reeeeeeteaeeeeeeeessesassssssssssasssesseeseesssssanneeesees 8
RPG CharaCter SIMUITONc..eiiiiieiiee ettt ettt et e st e st esae e e bt e e sbe e e beesabeesabeesaneenneeens 8
Types of Programming LANGUAGE.coccuiiiiiieiiiiiiee ettt e e e e ettt e e e e e ettt e e e e e e e bteeeeeeeaataeeeseesabtaeeeeeeaastanaaaaaaaaaaaaaaaaaaaens 9
) AL (ol = T ol Y=L TP UPU PP PPPPP 10
Programming ProjJECt — ANAIYSIS..........cevuiiiiiiiiiiiiiiiicccccccirereeee et e e e e e e e e e e e e e e et s baabbaaaeeeeeeteaaaaeeeeessesssasssssssrsssessaeeeeees 11
1. Defining the problem & the StaKEhOIErS.........cooii i e e et e e e e e ettae e e e e e e eeeeeseaees 12

2. Justification of how the problem can be solved by computational methods..........ccccovveieiiiiiiieiieeeee 13

R (=TT 1 (ol o O RSP SPUPOP RO PP SR UPPPPP 14
4. Features of YOUr PropPOSEA SOIUTION.......cccccciiiiiiiieiiieeeeeeeeeeeeeeee et rrrrereeeeteeeeeeeeeeeseessssssasssssssssaanseeeesssssnnnsaeeees 15

5. Hardware & SOftWare reqUIrEMENTS........eiiiiiiiieee ettt ecte e e e et e e e et re e e e e sabb e e e e esaaabteee e e e s s e e aaaeeeaaeaaanns 15

6. Success criteria / Requirements SPECITICAtION........cccuiiiiiiie ittt ettt eette e e e etee e e et e e e e e e e e e e nasaaaeeeas 15

WANDSWORTH TOp
3R B,
GRADED @ “" |NACULISSAS o r§
GOOD . LUSION
Outstandlng MARK ...g. 8

Introduction

The aim of this booklet is to ease you into A level Computer Science. The course we follow at
Saint John Bosco College is OCR Computer Science. There is a link to the specification on this page.
There is also some recommended reading. Some of these are books that could support you
throughout the year.

The jump from GCSE to A level is huge and to be a successful Computer Scientist at A level it is
essential you work on the key concepts such as Data representation, Data Structures and
Searching and Sorting Algorithms. Have a go at the activities in this booklet. Answers will be
provided for you to check your understanding. These activities also extend into KS5 content to
give you a bit of a challenge. Go to the useful websites page to support you with these activities.
Once you have completed the transition activities, start to think about what programming project
you would like to carry out and complete the analysis section.

You are expected to complete all work and bring it to your first lesson of Computer Science in
September. If you are new to Python or not a very strong programmer, please email me for some
additional resources to build up your skills in this area.

OCR Computer Science H446 - Specification

This is a two-year, linear A-Level course which will be formally assessed at the
end of the two years.

The content of this A Level in Computer Science is divided into three
components:

 Computer systems component (01) contains the majority of the content of
the specification and is assessed in a written paper recalling knowledge and
understanding.

* Algorithms and programming component (02) relates principally to
problem solving skills needed by learners to apply the knowledge and
understanding encountered in Component 01.

Computer Science Teacher: Mrs M Perrineau-Daley
Email address: mperrineau-daley@sjbc.wandsworth.sch.uk

https://www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-science-h446.pdf

Recommended Reading

The following is a list of suggested texts that may help you with your studies of A Level Computer
Science, it is not an exhaustive list.

OCR AS and A Level Computer Science:

PM Heathcote and RSU Heathcote

ISBN: 978-1-910523-05-6

You will need to purchase this book for the course. It is available on Amazon

This textbook covers Component One and Two of the A Level course and also has a section on
Completing Component Three.

Tackling A Level projects in Computer Science OCR H446:
Ceredig Cattanach-Chell

ISBN: 978-1-910523-19-3

Available on Amazon

This is an extensive how-to guide on completing the programming project. Starting with how to
choose a project to work on and then how to write about it. It has been written by one of the OCR
team who has

been heavily involved with the creation of the GCSE and A-Level Computer Science specifications.

Essential algorithms for A Level Computer Science:
D Hillyard and C Sargent

ISBN: 978-1-794359-42-0

Available on Amazon

This book details all of the algorithms and data structures that you need to know for the A Level
course. Each algorithm has visual representations, pseudocode examples and working Python and
Visual Basic code examples.

Useful Websites

Craig n Dave Videos - https://www.youtube.com/c/craigndave/

These videos are specifically tailored to the course and cover each element in the specification.
They will be used for flipped learning before each lesson.

101 Computing - https://www.101computing.net/category/a-level-concepts/
Lots of facts and interactives to help you to understand some of the different topics covered in the
A Level course. There are also sections for the GCSE content as well if you want/need a refresher.

W3schools - https://www.w3schools.com/

Tutorials and examples of code used for various different aspects of web development, such as
HTML, CSS, JavaScript, SQL. Also has a “Try it” editor which allows you to write code and then see
it in action within your web browser.

PacktPub Free Learning - https://www.packtpub.com/free-learning

A free eBook every day that focuses on different programming languages and projects that can be
completed with them. They often have books that cover Web Design, Artificial Intelligence, and
Games Design to list but a few.

Crash Course Computer Science - https://www.youtube.com/watch?v=05nskjZ_Gol

A YouTube playlist created by Carrie Ann Philbin (Director for Education at the Raspberry Pi
Foundation) that gives an explanation of what Computer Science is, ranging from how it began to
where it is heading.

Crash Course Artificial Intelligence - https://www.youtube.com/watch?v=a0 lo_GDcFw
A YouTube playlist that has been based on a University-level curriculum. It looks at the principals
of Artificial Intelligence and Machine Learning and discusses their applications.

https://www.youtube.com/watch?v=a0_lo_GDcFw
https://www.youtube.com/watch?v=O5nskjZ_GoI
https://www.packtpub.com/free-learning
https://www.packtpub.com/free-learning
https://www.w3schools.com/
https://www.101computing.net/category/a-level-concepts/
https://www.youtube.com/c/craigndave/
https://www.youtube.com/c/craigndave/playlists?view=50&sort=dd&shelf_id=6

Transition Activities

Data Types, Data Structures and Algorithms
Activity 1

Converting between denary, binary and hex

No. Denary Binary Hex Binary value plus 00011110
1 1
2 5
3 10
4 22
5 40
6 77
7 91
8 121
9 144
10 168
11 170
12 200
13 211

Activity 2

Create a program that analyses a passage of text from a file and then counts:

e How many words

® The average length of a word
e How many times each word occurs
e How many words start with each letter of the alphabet?

The aim of this exercise is to test your ability to develop algorithms.

http://pythonschool.net/data-structures-algorithms/linear-search/
https://www.bbc.co.uk/bitesize/guides/z26rcdm/revision/4
https://www.bbc.co.uk/bitesize/guides/zp73wmn/revision/3
https://www.bbc.co.uk/bitesize/guides/z26rcdm/revision/3

Binary Truth Tables

1. Write the truth tables for the expressions:

NOT (A AND B)

and ((NOT A) OR (NOT B))

2. What do you notice about these tables?

3. Design and create a program to output the value of a after the statement:
IF(a<b)OR(b<c)THENa=b

has been executed.

4. Decide on suitable test data for this program giving a reason for each combination of values
for a, b and c, give your expected result and the actual result for each.

Values Reason Expected Actual

Problem Solving and Programming

RPG character simulator

Planet of Fight craft wants you to build character classes for their new game.
Each character will have the following things:
e Name

e Type (Barbarian, EIf, Wizard, Dragon, Knight)
e Health

e Power

e Special attack power

e Speed

All characters start with 100 health.

Different creatures have different power ratings (B: 70, E: 30, W: 50, D: 90, K: 60)

Different creatures have different special attack power ratings (B: 20, E: 60, W: 70, D: 40, K: 10)
Different creatures have different speed ratings (B: 50, E: 10, W: 30, D: 50, K: 60)

Tasks

1. Generate a random name: en-da-fu and el-kar-tuk could be names, so you could make a name
generator which sticks together three syllables from ‘word banks’.

2. Create the generic character class. Test to see if you can create multiple characters.

3. Create subclasses corresponding to different types of creature (B, E, W, D & K).

4. Make a program that randomly generates 10 of these creatures to add into a list.

5. Make a method in the character class that enables printing out of each character’s stats to
the console.

6. Create a menu system that lets you add and delete characters and print out the list until you
are happy with the team.

7. Create methods to let you edit any character’s stats and add this to your menu system.

8. Create a way to save your team to a file and load it up again if needed.

How to evidence your work.

1. Please save your code in a simple text document such as notepad.

2. Make sure you have included comments in your code

When you have completed your work email to me at: mperrineau-daley@sjbc.wandsworth.sch.uk

Types of Programming Language

Note: The following activities are designed to be a bridge between what is studied at A Level

and typical content that may be covered at University. Please feel free to have a go at these tasks
but it is not expected that you complete them.

Activity 1a: Average of an array
Create a procedural program that can be described in structured English as follows:
The ‘Average of an Array’ program
Step 1: User repeatedly enters numbers into an array.
Step 2: Array average is calculated by finding the sum of the array and the number of
elements in it.
Step 3: The result of the calculation is output.
Step 4: User is asked if they want to repeat the program.

Activity 1b: Redo your program from 1a using functions (subs that return values) for all procedures
except main()

Activity 1c: How would you carry out unit tests on your procedures?

Activity 2a: Write a program that matches the following structure with comments that explain
your code:

Subl
Sub2
Functionl
Function2
Main

Activity 2b: If you were not constrained by this structure, how would you implement the same
program? Can you think of a better structure?

Activity 2c: A Learner wrote a program with this very clever line in the procedure ‘main’:
“show_km(convert(validate(read_miles ())))”

Explain how the Learner was able to do that and complete this program by creating the

procedures necessary to make this line work.

Activity 2d: Rewrite the program in the imperative procedural paradigm with comments.

Activity 2e: Name the state variables.

What is their usefulness?

How could using state variables create problems?
Provide an example of this situation.

Activity 2f: List the differences between your two programs.

Stretch exercises:
Activity 2g: Modify both versions of your program to ask the user the direction of the unit

conversion, e.g. ‘miles to km’ or ‘km to miles’.

Activity 2h: Modify both programs to ask if a user wants another distance converted. Which

paradigm was easier to modify?

10

Programming Project — Analysis

In Year 13 you will be creating your own piece of software for your Programming Project. This

is worth 70 marks. This is equivalent to 20% of your final A Level marks.

To help you get a head start with this, over summer you need to think about what you would like
to do for your programming project and who your end user will be.

You will then need to complete the Analysis phase of the project by documenting:

e What the Project is.
e Who your end-user will be.

e Anyone else who might be affected by you project.

e Research existing/similar programs

¢ Identify requirements and success criteria.

e Discuss any limitations your solution might have.

Use the mark scheme and guidance below to help you with this.

AD 2.2 Analysis ([maximum 10 marks)

1-2 marks

3-5 marks

68 marks

9-10 marks

The candidate will have:

+ |dentified some features
that make the problem
solvable by computational
methods.

» Identified suitable
stakeholders for the
project and described
them and some of their
requirements.

+ |dentified some appropriate
features to incorporate into
their solution.

+ |dentified some features
of the proposed
computational solution.

+ |dentified some limitations
of the proposed solution.

+ |dentified some
requirements for the
solution.

+ |dentified some success
criteria for the proposed
solution.

Described the features that
make the problem solvable by
computational methods.
Identified suitable
stakeholders for the project
and described how they will
make use of the proposed
solution.

Researched the problem
looking at existing solutions to
similar problems identifying
some appropriate features

to incorporate into their
solution.

Identified the essential
features of the proposed
computational solution.
Identified and described some
limitations of the proposed
solution.

Identifiad most requirements
for the solution.

Identified some measurable
success criteria for the
proposed solution.

Described the features that make the
problem solvable by computational
methods and why it is amenable to a
computational approach.

Identified suitable stakeholders for the
project and described them and how
they will make use of the proposed
solution and why it is appropriate to
their needs.

Researched the problem in depth
looking at existing solutions to similar
problems identifying and describing
suitable approaches based on this
research.

Identified and described the

essential features of the proposed
computational solution.

Identified and explained any limitations
of the proposed solution.

Specified the requirements for the
solution including (as appropriate) any
hardware and software requirements.
Identified measurable success criteria
for the proposed solution.

Described and justified the features that make
the problem solvable by computational methods,
explaining why it is amenable to a computational
approach.

Identified suitable stakeholders for the project
and described them explaining how they will
make use of the proposed solution and why it is
appropriate to their needs.

Researched the problem in depth looking at
existing solutions to similar problems, identifying
and justifying suitable approaches based on this
research.

Identified the essential features of the proposed
computational selution explaining these choices.
Identified and explained with justification any
limitations of the proposed solution.

Specified and justified the requirements for the
solution including (as appropriate) any hardware
and software requirements.

Identified and justified measurable success
criteria for the proposed solution.

0 marks = no response or no response worthy of credit.

11

In this analysis phase you need to make sure to include all the following sections:

1. Defining the problem & the Stakeholders

Start by giving a brief background to the problem. Answer the questions:

What is the company?

What does the company do?

Who are the stakeholders / end users?

What problem do they have?

How will they make sure of your proposed solution and why is it appropriate to their needs?

This initial description of the problem should be no more than a couple of paragraphs.

If you are writing a computer game, give a description of the type of game it is with a very brief
explanation.

Explain who will play the game and on what platform. Identify the key requirements outside the
actual game play itself, e.g. in the case of a mobile phone game: easy to pick up and put

down, pause at any point and continue later.

If the problem has already been solved, pretend you are solving it for a new platform or user.
e.g. with space invaders, perhaps it is a mobile phone version or a new twist on the old
concept.

Note about stakeholders: Make sure you clearly name all the stakeholders / users for your
system. These must be actual named individuals that you can have regular contact with as
they will be required to give you feedback and interviews throughout the development of your
project. You can have more than one stakeholder / user. For example, if you are creating a
Maths revision utility for Year 11’s then you would clearly have two users, Maths teachers

and Year 11 students. They will both be able to give you requirements and feedback from their
different perspective.

It is also acceptable to have chosen a “persona”, someone who personifies the typical user for
your chosen system.

This will be most likely if you choose to make a game. Decide who your game is targeted at e.g.
“Teenagers into mobile gaming” and then choose a named person from this target group

who you will be able to have regular contact with to act as your stakeholder / end user?

Make sure in this section to not just simply list our users / stakeholders. For top marks you
must make sure to explain how they will make sure of your proposed solution and explain why it is
suitable for their needs.

12

2. Justification of how the problem can be solved by computational methods
You must fully justify how the solution you wish to program can be solved by computational
methods. These are all the methods you will be studying for Unit 2 and include:
e Thinking Abstractly & Visualisation
o How will your problem simplify reality? If you are producing a game, simulation,
training aid, booking system etc what detail IS important and what details from
reality will you ignore or omit?
® Thinking Ahead
o What data / inputs will be required for your solution to work?
e Thinking Procedurally & Decomposition
o Can your problem be easily broken down and tackled in smaller chunks?
® Thinking Logically
o Will your problem have obvious decisions points for branching or repetition
(looping)?
e Thinking Concurrently
o Will there be any parts of your problem which could be solved or could happen at
the same time?

13

3. Research
In this section you are describing the problem. With a game, take this approach to the write up:
1. Initial research: start by identifying a similar game (perhaps from the internet) and describe
the mechanics of how it plays.
2. Form a set of questions to ask the user about how your game should look, sound and play.
Document the user responses to these questions. (See Note 1) e.g.
Q: What does the player control in the game?
A: The player controls a spaceship that can move left and right at the bottom of the
screen.
3. Deliberate on the answers you are given and the initial research. This will inform the
proposals.
4. Propose a solution to the problem by describing each element of the game in detail. You
can have mock-ups of the graphics from a drawing application at this stage. (See Notes 2
and 3)
5. Get aresponse from the user about whether this meets their expectation.
6. Get an agreement from the user.

Note 1: You need to conduct an interview and/or observation of at least one existing system to
know the details of what you need to know to make the program later. Keep records of the
questions and observations you make, together with answers to questions.

Note 2: You need to discuss in detail exactly what the system is going to do, but not how it is going
to do it. This is not about design or algorithms, it is about the requirements. Here we are focusing
on the what, not the how. Detail is very important in this section in your descriptions of the
system.

Note 3: Consider a typical space invaders game. You would need to discuss that the player controls
a ship. The ship can move left or right inside a fixed plane at the bottom of the screen. The ship can
fire one bullet at a time. There cannot be more than one bullet from the player on the screen at
the same time. The objective is for the player to shoot all the invaders. The invaders start towards
the top of the screen and move from left to right together in initially 5 rows of 12 invaders. When
the right-most invader reaches the right edge of the screen, all the invaders move down a little on
the screen and start moving from right to left. When the left-most invader reaches... etc.

‘Leave no stone unturned’. Your analysis should include sufficient detail so if you were to get a
programmer to read the analysis, there is nothing more they would need to ask before making the
solution. Of course, the really fine details may not be entirely known and will be picked up in the
development process. For example, the speed at which the ship moves across the screen. You
would need to play the game to know what feels right. That is unlikely to be known at the analysis
stage and the necessary dialogue between you and a user will gain you marks in the design section
later.

14

You should write your analysis as if you were having a discussion with a user. For example,

“The intended audience for the game is...” “l am using my teacher as a representative for that
audience.” “l discussed the requirements of the game with...” “It was suggested to me that...”
Whatever the problem, it will always have a target audience and therefore an identifiable user
which you should be discussing requirements with and keeping records of these discussions.

4. Features of your proposed solution

In this part you should make sure to clearly explain each of the features of your proposed
solution. How you choose to do this is up to you, however, look carefully through your research
and analysis and make sure you have not missed anything.

In this section you should also identify any limitations of your proposed solution. It will, by the
nature of an A Level project be limited. If it is a game, what will it not do, be realistic. This is a
good time to flag up desirable features that will not be included in the solution (you can revisit
this again when you write your evaluation at the end).

5. Hardware & Software requirements

You should discuss the hardware and software required to run your program. e.g. an IBM
compatible PC with x processor, y memory and z hard disk space running the Visual Basic
runtime libraries? Find out the necessary spec to run the development environment i.e. VB or
Access on a computer.

If any additional software is required to run your solution or if your solution is only intended to
work with specific versions of software this needs to be identified here.

6. Success criteria / Requirements specification

As a summary of the analysis, create a numbered point list or table of the exact and actual success
criteria / requirements. Call this the “Success Criteria / Requirements Specification.”

Avoid requirements that cannot be measured. e.g. “It must be easy to use” is too vague. “The
user should be able to find a product within 20 seconds” is better. “A player scores 50 points

for each invader.” Remember, specific and measurable. It should contain numbers. Numbers of
records, users, invaders, points etc.

15

	Introduction
	Recommended Reading
	Useful Websites
	Transition Activities
	Data Types, Data Structures and Algorithms
	Activity 1
	Activity 2

	Binary Truth Tables
	Problem Solving and Programming
	RPG character simulator

	Types of Programming Language
	Stretch exercises:

	Programming Project – Analysis
	1. Defining the problem & the Stakeholders
	2. Justification of how the problem can be solved by computational methods
	3. Research
	4. Features of your proposed solution
	5. Hardware & Software requirements
	6. Success criteria / Requirements specification

