Year 10 PPE2 Computer Science

Paper 2: Computational thinking

Computers can be used to help solve problems. However, before a problem can be tackled, the problem itself - and the ways in which it could be solved - needs to be understood.
Computational thinking helps with this. It allows us to take a complex problem, understand what the problem is and develop possible solutions. These solutions can then be presented in a way that a computer, a human, or both can understand.
Two important elements of computational thinking are:
· decomposition
· abstraction
Computational thinking involves taking a complex problem and breaking it down logically into a series of small, more manageable problems for which an overall solution can be found.
Complex problems and computational thinking
· A complex problem is one that - at first glance - does not have an obvious, immediate solution.
· Computational thinking involves taking that complex problem and breaking it down into a series of small, more manageable problems.
· Each of these smaller problems can then be looked at individually.
· Next, simple steps to solve each of the smaller problems can be designed.
· Finally, these simple steps are used to program a computer to help solve the complex problem in the best way.

Logical reasoning
· Logical reasoning is not programming. Put simply, programming tells a computer what to do and how to do it.

· Logical reasoning enables programmers to work out exactly what to tell the computer to do.
For example, if you agree to meet your friends somewhere you have never been before, you would probably plan your route before you step out of your house. You might consider the routes available and which route is ‘best’. This might be the route that is the shortest, the quickest, or the one which goes past your favourite shop on the way. You'd then follow the step-by-step directions to get there.
In this case, the planning part is logical reasoning, and following the directions is like programming.
· Being able to turn a complex problem into one that can be easily understood is a skill that is extremely useful.

Decomposition and abstraction
Decomposition involves analysing a complex problem or system and breaking it down into smaller parts that are more manageable and easy to understand. The smaller parts can then be examined and solved, or designed individually, as they are simpler to work with.
If a problem is not decomposed, it is much harder to solve. Dealing with a complex problem is much more difficult than breaking a problem down into subproblems and solving them, one at a time. Smaller problems are easier to understand and can be examined in more detail.

Sample Questions: How might you decompose the complex problem of how to create an app?
Answer: The problem might decompose into these simpler problems:
· what kind of app you want to create
· what your app will look like
· who the target audience for your app is
· what your graphics will look like
· what audio you will include
· what software you will use to build your app
· how the user will navigate your app
· how you will test your app
· where you will sell your app
These smaller problems, solved individually, may help you to create an app.

Algorithms
An algorithm is a logical, step-by-step process for solving a problem. Algorithms are normally written using one of the following conventions:
· pseudo-code
· flowcharts
· written descriptions
· program code
An algorithm should be seen as a starting point before writing a program. It should include the required programming constructs to solve the problem, ie sequence, selection and iteration. The finished program should follow the steps the algorithm describes.
Before an algorithm can be designed, it is important to check that the problem is completely decomposed

The decomposed problem should consider the following questions:
· What are the inputs into the problem?
· What will be the outputs of the problem?
· In what order do instructions need to be carried out?
· What decisions need to be made to solve the problem?
· Are any areas of the problem repeated?
Only when a problem is properly decomposed and understood can an algorithm design begin.

Pseudo-code
Most programs are developed using programming languages. These languages have specific syntax that must be used so that the program will run properly.
Pseudo-code is not a programming language. Instead, it is a simple way of describing a set of programming instructions in a manner that resembles a programming language. Pseudo-code has its own syntax, some of which is very similar to many actual programming languages. Any algorithms designed using pseudo-code will not run unless they are converted into an actual programming language.
This simple pseudo-code algorithm asks a user to input what their favourite subject is:
WHILE answer <> 'computer science' DO
 SEND 'What is your favourite subject?' TO
 DISPLAY
 RECEIVE answer FROM (STRING) KEYBOARD
 IF answer = 'computer science' THEN
 SEND 'Good choice!' TO DISPLAY
 ELSE
 SEND 'Really? ' TO DISPLAY
 END IF
 END WHILE

Pseudo-code is a simple way of describing a set of programming instructions in a manner that resembles a programming language.
Advantages and disadvantages of pseudo-code
Designing an algorithm in pseudo-code has advantages because:
· it can be quickly and easily converted into an actual programming language as it is similar to a programming language
· it is fairly easy to understand, even for non-programmers
· it does not matter if there are errors in the syntax - it is usually still obvious what is intended
· changes to the design can be incorporated quite easily
Pseudo-code also has its disadvantages:
· It can be hard to see how a program flows. For example, where does following one path as opposed to another take the program?
· It can be time consuming to produce.
Flowcharts
A flowchart is a diagram that shows an overview of a program. Flowcharts normally use standard symbols to represent the different types of instructions. These symbols are used to construct the flowchart and show the step-by-step solution to the problem. Flowcharts are sometimes known as flow diagrams.

[image: A chart with different colored arrows

Description automatically generated with medium confidence]

Example: The below flowchart is for a program that prints the numbers only from 1 to 10.

[image: A diagram of a algorithm

Description automatically generated]

Advantages and disadvantages of using flowcharts
Designing an algorithm using a flowchart has advantages because:
· it is easy to see how a program flows
· flowcharts follow an international standard - it is easy for any flowchart user to pick up a diagram and understand it
Flowcharts also have their disadvantages:
· with a large program, the diagrams can become huge and therefore difficult to follow
· any changes to the design may mean a lot of the diagram has to be redrawn
Written descriptions
Algorithms can also be ‘written descriptions’. There is no defined format for this, so programmers are free to write as they wish. Short sentences are best. An algorithm should be easy to understand and have no unnecessary detail. A recipe is a good example of clear instructions, eg ‘stir’ and ‘bake’. A written description should include all the elements found when decomposing the problem.
Advantages and disadvantages of using written descriptions
Designing an algorithm using written descriptions has advantages because:
· there is no need to worry about using correct syntax
· it feels more natural to use normal writing
The main disadvantage of a written description is that there is a temptation to use too many words. This makes the algorithm descriptive rather than instructional.
Program code
Program code can also be used to create an algorithm. In this context it is called draft program code. There is no requirement for an algorithm to compile and run so errors are acceptable so long as the meaning is clear.
Designing an algorithm using program code has the following advantages:
· program code is very familiar
· the syntax doesn’t have to be completely correct
· all the possible elements required will be present in the language - unlike pseudo-code
Program code algorithms also have their disadvantages:
· it is possible for the whole design stage of creating an algorithm to be missed
· decomposition might not have been completed
The three basic programming constructs
Programs are designed using common building blocks. These building blocks, known as programming constructs, form the basis for all programs.
There are three basic building blocks to consider:
· sequence
· selection
· iteration
Sequence is the order in which instructions occur and are processed. Selection determines which path a program takes when it is running. Iteration is the repeated execution of a section of code when a program is running.
There are two types of iteration:
· count-controlled iteration
· condition-controlled iteration
All programs use one or more of these constructs. The longer and more complex the program, the more these constructs will be used repeatedly.
This guide uses pseudo-code examples to illustrate the constructs. It is important to realise that while all programming languages include these constructs, there may be slightly different formats.
Sequence
Sequence is the first programming construct. In programming, instructions are executed one after another. Sequence is the order in which the instructions are executed.

n this pseudo-code program, designed to find the average of two whole numbers, the instructions are in in the wrong sequence:
SET total TO 0
 SET average TO number1/number2
 SEND ‘Enter the first number: ‘ TO DISPLAY
 RECEIVE number1 FROM (INTEGER) KEYBOARD
 SEND ‘Enter the second number: ‘ TO DISPLAY
 RECEIVE number2 FROM (INTEGER) KEYBOARD
 SEND ‘The average is ‘ & average TO DISPLAY
Running this program would result in an error because it tries to calculate the average before it knows the values of the numbers.
This version has the instructions in the correct sequence:
SET total TO 0
 SEND ‘Enter the first number: ‘ TO DISPLAY
 RECEIVE number1 FROM (INTEGER) KEYBOARD
 SEND ‘Enter the second number: ‘ TO DISPLAY
 RECEIVE number2 FROM (INTEGER) KEYBOARD
 SET average TO number1/number2
 SEND ‘The average is ‘ & average TO DISPLAY
Writing instructions in the wrong order is one of the most common programming errors. It happens no matter which programming language is used.
Selection
Selection is the second programming construct. In programming, there are occasions when a decision needs to be made. Selection is the process of making a decision. The result of the decision decides which path the program will take next.

Selection works by testing a condition. The test gives a Boolean result - TRUE or FALSE. If the result is TRUE, the program follows one path - otherwise it follows another.
In programming, selection is implemented using IF THEN or IF THEN ELSE statements:

SEND ‘How old are you?‘ TO DISPLAY
 RECEIVE age FROM (INTEGER) KEYBOARD
 IF age > 16 THEN
 SEND ‘You are old enough to drive a car!’
 TO DISPLAY
 ELSE
 SEND ‘Come back when you are older!’
 TO DISPLAY
 END IF
In the pseudo-code program above, the path the program takes depends on the condition. A variable - in this case age - is used to test the condition.
If the value of age is greater than 16, the result of the tested condition is TRUE and the program follows the first path, which follows the statement THEN. This path informs the user that they are old enough to drive.
If the value of age is less than 16, the result is FALSE and the program follows the second path, which follows the statement ELSE. This path informs the user that they are not yet old enough to drive.
The statement END IF ends the selection.

Iteration
Iteration is the third programming construct. There are times when a program needs to repeat certain steps until told otherwise, or until a condition has been met. This process is known as iteration.

Iteration is also often referred to as looping, since the program ‘loops’ back to an earlier line of code. Sections of code that are iterated are called loops.
Iteration enables programmers to greatly simplify a program.

Count-controlled iteration
Count-controlled iteration repeatedly executes a section of code a fixed number of predetermined times. This is implemented using a FOR loop, which uses a control variable to determine what code is repeatedly executed and how many times. This pseudo-code program would also print out a message six times:
FOR count FROM 1 TO 6 DO
 SEND ‘Coding is cool’ TO DISPLAY
 END FOR

The first line of the program determines how many times the code is to be iterated. It uses a variable, in this case count, known as the control variable, to keep track of how many times the code has been repeated so far. The variable is given a starting value - in this case 1 - and an end value - in this case 6.

Advantages:

When programmers use iteration, a program is simplified, less error-prone and more flexible. This is because:
· there are fewer lines of code, which means there are fewer opportunities for typing errors to creep in
· to increase or decrease the number of iterations, only the loop's end value needs to be changed
Condition-controlled iteration
Condition-controlled iteration repeatedly executes a section of code until a condition is met - or no longer met. The two most common types of condition-controlled iteration are:
· while loops, which use the statements WHILE and END WHILE
· repeat loops, which use the statements REPEAT and UNTIL
While condition-controlled loops
· While loops test the condition at the beginning of the loop. If the condition is met, the code within the loop is executed before the program loops back to test the condition again. This pseudo-code program would print out a message six times.
SET count TO 0
 WHILE count < 6 DO
 SEND ‘Coding is cool’ TO DISPLAY
 SET count TO count + 1
 END WHILE
· The WHILE statement defines the start of the loop. The END WHILE statement declares the end of the loop. A variable - in this case count - is used for the condition and it must be initialised before the loop starts. The WHILE statement tests the condition - in this case to see if the value of count is less than 6. If the result is TRUE, the code within the loop is executed. Then the program loops back to the condition, which is tested again.

Repeat condition-controlled loops
Repeat loops function in the same way as while loops with one major difference - the condition is tested at the end of the loop.
SET count TO 0
 REPEAT
 SEND ‘Coding is cool’ TO DISPLAY
 SET count TO count + 1
 UNTIL count = 10
The REPEAT statement defines the start of the loop. The UNTIL statement tests the condition. Because the condition is tested at the end, the code within the loop is always executed at least once, even if the result of the test is FALSE. REPEAT loops are often used to display menus that always need to be displayed at least once.
Nesting
Nesting is when one programming construct is included within another. Nesting enables powerful yet simple programming. It reduces the amount of code needed, while making it simple for a programmer to debug and edit.

[image: A screenshot of a computer program

Description automatically generated]

Nested iteration
Iteration can also be nested. This pseudo-code program uses two count-controlled loops - one within another - to print out the times table for all numbers from one to ten:

[image: A close-up of a computer screen

Description automatically generated]
For every iteration of x, y is iterated ten times.
This program uses condition-controlled WHILE loops, one within another, to print out the times table for all numbers from one to ten:

[image: A white background with black text

Description automatically generated]

Variables and constants
Programs usually use data in some shape or form. Data in programs is usually referred to as ‘values’.
Variables
A variable is a named memory location in random access memory (RAM) that holds a value.

A variable's name is known as an identifier. The identifer given to a variable usually follows certain rules:
· It can contain letters and numbers but must start with a letter.
· It must contain at least one letter (at the start of the name).
· It must not contain special characters such as !@£$%&* or punctuation characters. However, an underscore can be used. Spaces are not allowed.
· The name should be meaningful - it should represent the value it is holding.
Constants
· A constant enables a value to be assigned a name. Unlike a variable, the value assigned to a constant cannot be changed while the program is running.
· Constants are useful because they are declared and assigned once, but can be referred to over and over again throughout the program.

Global and local variables
The area of a program where a variable is accessible is referred to as its scope. A global variable can be accessed and changed throughout the whole program. It is declared outside of a subprogram.
Local variables are usually confined to a subprogram. A variable with local scope will only be available within the subprogram and it is declared within the subprogram. Therefore, the programmer is able to use the same variable names again and again for different purposes. This makes debugging easier as programmers know what section of code has access to the variables.
When using global variables, programmers must be careful not to use a local variable with the same name. Depending on the programming language, this could result in an error or the programmer updating the wrong version (local or global) of the variable. In general, global variables should be avoided as much as possible. This is because the value of the variable could be changed anywhere within the program and this makes debugging very difficult.
Python works slightly differently and a global variable has to be declared as such within a subprogram before it can be used.
For example, in Python you would use ‘global ID = 75’ within a function to access the global variable ‘ID’.

Lists

A 1D array/list is a data structure that holds similar, related data. An array is like a collection of boxes, each of which is called an element. Each element has a position in the array and can hold a value. The data in an array must all be of the same data type.
Assigning values to a list
Values are assigned to an element in an array by referring to the element's position in the list, eg

Score = [100,200,300,400]
Score[0] = 100 would assign the value 100 to the first element in the array.
Values in elements can be overwritten at any point, simply by assigning another value to that element.

Operators
In computer science, an operator is a character or characters that determine the action that is to be performed or considered.
There are three types of operator that programmers use:
· arithmetic operators
· relational operators
· logical operators
These operators are common to most high-level programming languages.
Arithmetic operators
Computers are designed to carry out calculations. Arithmetic operators allow arithmetic to be performed on values.

[image: A white table with black text

Description automatically generated]
Relational operators
Relational operators allow for assignment and enable comparisons to be made. They are used in condition testing.
[image: A table with numbers and symbols

Description automatically generated]
Logical operators
Logical operators are used to combine relational operators to give more complex decisions.

[image: A screenshot of a computer program

Description automatically generated]
Programming errors
When developing programs there are three types of error that can occur:
· syntax errors
· logic errors
· runtime errors
Syntax errors
A syntax error occurs when the code given does not follow the syntax rules of the programming language. Examples include:
· misspelling a statement, eg writing pint instead of print
· using a variable before it has been declared
· missing brackets, eg opening a bracket, but not closing it
A program cannot run if it has syntax errors. Any such errors must be fixed first. A good integrated development environment (IDE) usually points out any syntax errors to the programmer.

String manipulation
A string is a variable that holds a sequence of one or more alphanumeric characters. It is usually possible to manipulate a string to provide information or to alter the contents of a string. The examples below use Python to demonstrate string manipulation:
wordOne = "Computer"
wordTwo = "Science"
Length
The length of a string can usually be determined using the built-in len function. This gives the length as an integer.
len(wordOne) would give the answer 8 as there are eight characters in the word "Computer".
Character position
It is possible to determine which character features at a position within a string:
wordOne[2] would give the answer "m" as "m" is the third character in the word “Computer” - remember computers generally start counting at zero.
wordOne[0:2] would give "Com", the first three characters in the string.
wordOne[3:6] would give "put", the three characters starting from position three.
Upper- and lowercase
It is possible to change all letters in a string to either upper- or lowercase. This can be very useful, for example when checking possible inputs.
topic = "Computer Science".topic = topic.lower() would give a value for topic of "computer science"
topic = topic.upper() would give a value for topic of "COMPUTER SCIENCE".
Concatenation
To concatenate strings means to join them to form another string, eg:
sentence = wordOne + " " + wordTwo would give "Computer Science".
Alternatively, a string can be lengthened by adding more characters, for example:
wordOne = wordOne + " Science" would result in the value of wordOne becoming "Computer Science".

Logic errors
A logic error is an error in the way a program works. The program can run but does not do what it is expected to do.
Logic errors can be caused by the programmer:
· incorrectly using logical operators, eg expecting a program to stop when the value of a variable reaches 5, but using <5 instead of <=5
· incorrectly using Boolean operators
· unintentionally creating a situation where an infinite loop may occur
· incorrectly using brackets in calculations
· unintentionally using the same variable name at different points in the program for different purposes
· using incorrect program design
Unlike a syntax error, a logic error does not usually stop a program from running. The program will run, but not function as expected.
Runtime errors
A runtime error is an error that takes place during the running of a program.
An example is writing a program that tries to access the sixth item in an array that only contains five items. A runtime error is likely to crash the program.

Using subprograms to produce structured code
Subprograms are small programs that are written within a larger, main program. The purpose of a subprogram is to perform a specific task. This task may need to be done more than once at various points in the main program.
There are two types of subprogram:
· procedures
· functions

Benefits of using subprograms
· Subprograms are usually small in size, which means they are easier to write, test and debug than programs. They are also easy for someone else to understand.
· Subprograms can be saved separately as modules and used again in other programs. This saves time because the programmer can use code that has already been written, tested and debugged.
· A subprogram may be used repeatedly at various points in the main program. However, the code only has to be written once, resulting in shorter programs.
Procedures
A procedure is a subprogram that performs a specific task. When the task is complete, the subprogram ends and the main program continues from where it left off. For example, a procedure may be written to reset all the values of an array to zero, or add some values together.
A procedure is created using the following pseudo-code syntax:
PROCEDURE identifier (parameter(s))
 BEGIN PROCEDURE
 procedure code
 END PROCEDURE
A parameter allows a value to be passed in to the procedure. The name of each parameter can be used inside the procedure to access the value the procedure was called with. This is illustrated in the next example.
The following procedure - called add2numbers - takes two parameters called number1 and number2, adds the values assigned to them together and displays the answer:
PROCEDURE add2numbers(number1, number2)
 BEGIN PROCEDURE
 SET total TO number1 + number2
 SEND total TO DISPLAY
 END PROCEDURE
A procedure is run by calling it. To call it, programmers use the procedure name and include any parameter values that the procedure needs, eg:
add2numbers(2,5)
This prints the number 7 on the screen.
Functions
A function works in the same way as a procedure, except that it processes data and returns a result back to the main program.
For example, a function might be written to turn Fahrenheit into Celsius, eg:
FUNCTION f_to_c(temperature_in_f)
 BEGIN FUNCTION
 SET temperature_in_c TO
 (temperature_in_f – 32) * 5/9
 RETURN temperature_in_c
 END FUNCTION
A function is run by calling it from the main program. To call it, programmers use the function's identifier, the parameter value to be passed into the function, and a variable for the function to return and assign a value into, eg:
celsius = f_to_c(32)
This would result in the value of celsius being 0.
Procedures perform a specific task. Functions process data and return a value to the main program.
Built-in functions
Many programming languages include built-in, ready-made functions, such as:
· int - converts strings or floats into integers
· str - converts a number into a string
· asc - finds the ASCII number of a character
Additionally, some languages allow functions to be added in from external files called libraries. Libraries contain pre-written, tested functions that extend the functionality of a language.
Validation
Validation is used to assess whether data entered into a system is reasonable. It cannot tell if the data is correct, but it can check to see if it is within the acceptable parameters for valid data.
Techniques of validating data
A programmer should consider that any inputs a user makes may be incorrect and should plan for such mistakes. Using validation helps a programmer to ensure that any data input is possible and sensible.
Validation applies rules to input data. If the data does not follow the rules it is rejected, reducing the risk of invalid data crashing a program.
A programmer can build various types of validation into a program:
· Range check - the input must fall within a specified range. This is usually applied to numbers and dates, but can apply to characters. For example, when making a payment to someone, the amount to be entered might be set to be greater than zero and not greater than the funds available.
· Length check - the input must not be too long or too short. For example, a surname will require at least one letter but is unlikely to require more than 40.
· Presence check - a data value must be entered. For example, entering a quantity when placing an order.
· Format check - the data must be in the correct format, such as entering a date in the format DD/MM/YYYY.
· Type check - the data must be of a specified data type, such as an integer when specifying a quantity.
· Lookup table - this allows the user to pick one item from a specified pre-defined list.
· Check digit - often used on identification numbers such as bank account details to ensure the numbers have been entered correctly.
Many programs use one or more of these validation checks. For example, when signing up for a user account on a website the validation might include one or all of the following:
· presence check - a username must be entered
· length check - a password must be at least eight characters long
· range check - age restrictions may require the user's date of birth to be before a certain date
· format check - the user's date of birth must be entered in the specified format
· type check - the password may need to have a mixture of upper and lower case letters, a number and a special character
· lookup check - the item selected must be from a pre-defined list of valid entries
Validation does not ensure that the data entered is correct, just that it is possible and sensible. A user may accidentally enter a date of birth that is possible and sensible, but incorrect. The program has no way of knowing that the date has been entered incorrectly.
To get around this, many programs include authentication checks - they repeat the entered data to the user and ask them to confirm if this data is correct. If the user confirms the data, the program then assumes it to be correct. This is an example of how planning the design of a program can help reduce errors.
Validation can be very simple. This example uses a range check. The program will keep repeating the instruction until valid data has been entered:
number is integer
 tryAgain is boolean
 set tryAgain = TRUE
 while tryAgain == TRUE
 input “Enter a number between 0 and 10”, number
 if number >=0 AND number <=10
 output “Thank you”
 set tryAgain = FALSE
 else
 output “Invalid data entered, try again”
 end if
 end while

Basic file-handling operations
Programs process and use data. When the program finishes, or is closed, any data it held is lost. To prevent loss, data can be stored in a file so that it can be accessed again at a later date.
Files generally have two modes of operation:
· read from (r) - the file is opened so that data can be read from it
· write to (w) - the file is opened so that data can be written to it
· Opening and closing files
A file must be opened before data can be read from or written to it. To open a file, it must be referred to by its identifier, eg in Python:
file = open(‘scores.txt’,’r’)
This would open the file scores.txt and allow its contents to be read.
file = open(‘scores.txt’,’w’)
This would open the file scores.txt and allow it to have data written to it.
When a file is no longer needed, it must be closed, eg
file.close()
· Reading from a file
Once a file has been opened, the records are read from it one line at a time. The data held in this record can be read into a variable, or more commonly an array, eg
file = openRead("scores.txt")
 score = myFile.readLine()
 file.close()
· Writing to a file
Data is written to a file using the write statement, eg
file = open('scores.txt','w')
 file.write('Hello')
 file.close()
The code above would open a file for writing called ‘scores.txt’, write the word ‘Hello’ and then close the file.

Verification and authentication
Verification and authentication check if a user is allowed access to a system. The most common method for verifying a user on a system is with a user ID and password.
Authentication checks to see if a user is allowed access to a system and that they are who they claim to be. It goes beyond verification to confirm details that only an individual would know, for example online checks asking for a mother’s maiden name.
The user ID checks to see if the name is on a list of possible users and the password is used to check if the user is who they claim to be. In the example below, the user can attempt to enter the ID and password three times before the system is locked.
userID is string
 password is string
 accepted is boolean
 attempts is integer
 set accepted = FALSE
 set attempts = 0
 while accepted == FALSE
 while attempts < 3
 input ““Enter user ID”, userID
 input “Enter password”, password
 if userID == storedID AND password
 == storedPassword
 set accepted = TRUE
 end if
 else
 output “User ID or password incorrect”
 set attempts = attempts + 1
 end if
 end while
 if attempts = 3
 output “System locked, access denied”
 HALT PROGRAM
 end if
 end while
 output “Access granted”

Additional methods to authenticate users
There are other methods which can authenticate a user of a system. These include:
· entering a PIN
· fingerprint or facial recognition
· sending an email to the user’s email address to ask them to confirm a new online payment
· asking users to answer security questions such as their mother’s maiden name or the name of their first pet - these would need to be answered by the user when the account is initially set up
Subroutines
· Subroutines are small blocks of code in a modular program designed to perform a particular task. Since a subroutine is in itself a small program, it can contain any of the sequence, selection and iteration constructs.
· In the following example, the algorithm asks the user to enter two numbers. It then adds them together and, if the total is over 10, it runs the ‘CountDown’ subroutine. If the total is not over 10, it will run the ‘CountUp’ subroutine.

[image: A diagram of a flowchart

Description automatically generated]
Pseudocode:
[image: A screenshot of a computer program

Description automatically generated]

Please also look at resources here to improve you Pythin skills: https://www.pythonsponge.com/pages.html?book=.%2Ftutorial%2Fbook.json&chid=OIc01

image6.png
Arithmetic operation Operator Example
Addition + x=x+5
Subtraction - x=x-5
Multiplication . x=x*5
Division / x=x/5
Integer division DIV x=xDIV5
Remainder MOD x=xMOD 5

image7.png
Relational operation Operator Example
Assignment = x=5
Equivalence =or== ifx=5orifx==5
Less than < ifx<s
Less than or equal to <= ifx<=5
Greater than > ifx>5
Greater than or equal to = ifx>=5

Does not equal

Ifx<>50rifx!=5

image8.png
Logical operation | Operator

And AND

or OR omputer Science"
Net NOT while NOT x

image9.png
[| countbown

input num1

input num2

ouput total

total = total
True False

total > 10?

CountDown CountUp
| |

image10.png
declare Countboun
uhile total <> @
output total
total - total - 1
repeat
end Subroutine
declare CountUp
i is integer
seti-@
while i <> total
output 1
i-i+1
repeat
end Subroutine

num is integer
num2 is integer
total is integer
input “Enter first number”, numl
input “Enter second number”, num2
total = numl + num2
if total > 10

call Countboun
else

call Countup
end if

image1.png
Common flowchart symbols

I N

Line
—_

Process

Input/Output

Input/Output

@ Decision

Terminal
Start/Stop

Represents the flow from one component to the next

Anaction

Aninput or output

Ayes/no/true/false decision

The start or end of the process

image2.png
count <112 output count

count =
count +1

image3.png
SEND How old are you? TO DISPLAY
RECEIVE age FROM (INTEGER) KEYBOARD
IF age > 16 THEN
SEND “You are old enough to drive a car
and ride a moped’ TO DISPLAY
ELSE
IF age - 16 THEN
SEND You are old enough to ride
a moped!” TO DISPLAY
ELSE
SEND “Come back when you are older!”
0 DISPLAY
END IF
END IF

image4.png
FOR x FROM 1 TO 16 DO
FOR y FROM 1 TO 10 DO
SET result T0 y * x
SEND y & " * " & X & " = " & result
0 DISPLAY
END FOR
END FOR

image5.png
SETx TO 1
SETy T0 1
WHILE X < 11 DO
WHILE y < 11 DO
SET result T0 y * x
SEND y & " * " & X & " = " & result
0 DISPLAY
y=y+1
END WHILE
SETyTO1
SET X TOx +1
END WHILE

